Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 2): 129554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246458

RESUMO

In this study, a new natural preservative, ε-polylysine (ε-PL) and chitooligosaccharides (COS) Maillard reaction products (LC-MRPs), was prepared by Maillard reaction. The preservation effect of LC-MRPs combined with slightly acidic electrolyzed water (SAEW) pretreatment (SM) on vacuum-packed sea bass during refrigerated storage was evaluated. The results showed that after 16 days, SM treatment could effectively inhibit the microbial growth and prevent water migration in sea bass. In addition, the highest water holding capacity (69.79 %) and the best sensory characteristics, the lowest malonaldehyde (MDA) (58.96 nmol/g), trimethylamine (TMA) (3.35 mg/100 g), total volatile basic nitrogen (TVB-N) (16.93 mg N/100 g), myofibril fragmentation index (MFI) (92.2 %) and TCA-soluble peptides (2.16 µmol tyrosine/g meat) were related to SM group. Combined with sensory analysis, we can conclude that the combined treatment of SAEW and LC-MRPs could prolong the shelf-life of sea bass for another 11 days compared with the DW group. Results disclosed that the composite treatment of SAEW and LC-MRPs is a promising technology to improve the shelf-life of vacuum-packed sea bass during refrigerated storage.


Assuntos
Bass , Quitosana , Oligossacarídeos , Polilisina , Animais , Polilisina/farmacologia , Água , Vácuo , Reação de Maillard , Embalagem de Alimentos/métodos , Produtos Finais de Glicação Avançada , Conservação de Alimentos/métodos
2.
Biochem Biophys Res Commun ; 650: 30-38, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36773337

RESUMO

Chitooligosaccharides can be combined with amino acids or polypeptide to form Maillard reaction products (MRPs) with the antibacterial characteristics through Maillard reaction. This research aims to clarify the structure, antimicrobial effect and mechanism against Shewanella putrefaciens (S. putrefaciens) of ε-polylysine and chitooligosaccharides Maillard reaction products (LC-MRPs). The results of intrinsic fluorescence (IF) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, proton nuclear magnetic resonance (1H NMR) spectra and scanning electron microscope (SEM) indicated Maillard reaction occurred between ε-polylysine and chitooligosaccharides. The observation of confocal laser scanning microscopy (CLSM), SEM and growth curves of S. putrefaciens evidenced that LC-MRPs have the strongest antibacterial effects. The leakage of alkaline phosphatase (AKP) and lactate dehydrogenase (LDH) implied that LC-MRPs sabotaged bacterial barrier (cell wall and cell membrane). The changes in content of nucleic acids, reactive oxygen species (ROS) level, lipid peroxidation content (LPO), succinate dehydrogenase (SDH) activity and adenosine triphosphate (ATP) content showed LC-MRPs will affect bacterial genetic gene transcription, material and energy metabolism. Therefore, the LC-MRPs were effective antibacterial agents to inhibit S. putrefaciens, which will help to preserve food with S. putrefaciens as the main spoilage bacteria.


Assuntos
Anti-Infecciosos , Polilisina , Polilisina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Reação de Maillard , Produtos Finais de Glicação Avançada/química
3.
J Sci Food Agric ; 103(1): 152-163, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35848059

RESUMO

BACKGROUND: The Maillard reaction is a promising and safe method for obtaining chitooligosaccharide conjugates with proteins or peptides as food preservatives. This study aims to investigate the moisture state, physicochemical properties, and shelf-life of sea bass fillets treated with ε-polylysine (ε-PL) and chitooligosaccharides (COS), which are Maillard reaction products (LC-MRPs), during refrigerated storage. RESULTS: The results of microbiological analysis and confocal laser scanning microscope (CLSM) revealed that LC-MRPs could retard microbial growth effectively. Compared with control, other treated groups could strongly retard the increase in the thiobarbituric acid (TBA) value, the K-value and the total volatile basic nitrogen (TVB-N) value, and also inhibited the softening of texture and the accumulation of biogenic amines in fish. The results of low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) indicate that LC-MRPs could delay the water migration of fillets and increase water holding capacity (WHC). Through sensory evaluation, the application of LC-MRPs increased the shelf-life of refrigerated sea bass fillets for another 9 days. CONCLUSION: Maillard reaction products derived from chitooligosaccharides and ε-polylysine have strong potential for preserving sea bass. © 2022 Society of Chemical Industry.


Assuntos
Bass , Animais , Bass/microbiologia , Polilisina , Produtos Finais de Glicação Avançada , Água , Armazenamento de Alimentos , Conservação de Alimentos/métodos
4.
J Sci Food Agric ; 102(14): 6236-6245, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35502594

RESUMO

BACKGROUND: Sea bass (Lateolabrax japonicus), a marine fish, is prone to spoilage due to its high nutritional value. Preservatives are commonly used for storage for the production of fish fillets. In this work, chitosan (CS) was grafted onto chlorogenic acid (CA) to obtain a new preservative, chitosan grafted chlorogenic acid (CS-g-CA), which could enhance the biochemical properties of chitosan and obtain better antibacterial and antibacterial properties. This study therefore investigated the inhibitory effects of CS-g-CA on antioxidant enzyme activity, and lipid and protein oxidation of sea bass fillets stored at 4 °C. RESULTS: Compared with the control group on day 9, the activity of 63% catalase (CAT), 78% superoxide diamidase (SOD), 73% glutathione peroxide enzyme (GSH-Px) and 60% DPPH scavenging activity was retained by CS-g-CA treatment. Changes in thiobarbituric acid (TBA) and conjugated diene (CD) values were delayed by CS-g-CA treatment. The use of CS-g-CA retards protein oxidation by inhibiting the formation of free amino acid and carbonyl groups, and maintaining a higher sulfhydryl content. Regarding myofibril degradation, CS-g-CA could maintain protein secondary structure by increasing the ratio of α-helices. CONCLUSIONS: Chitosan-grafted chlorogenic acid could protect the activity of antioxidant enzymes and inhibit lipid oxidation by slowing down the production of lipid oxidation products. It also delayed protein oxidation by inhibiting oxidation product generation and stabilizing protein structure. It could therefore be used as a promising preservative for seafood. © 2022 Society of Chemical Industry.


Assuntos
Bass , Quitosana , Aminoácidos , Animais , Antibacterianos , Antioxidantes/farmacologia , Bass/microbiologia , Catalase , Quitosana/química , Ácido Clorogênico/farmacologia , Glutationa , Lipídeos , Alimentos Marinhos/análise , Superóxido Dismutase , Superóxidos
5.
Ultrason Sonochem ; 81: 105854, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34861558

RESUMO

A novel technique for sea bass (Lateolabrax Japonicus) fillets by combining ultrasound (US) and slightly acidic electrolyzed water (SAEW) to inactivate bacteria and maintain quality was developed. Samples were treated with distilled water (DW), US, SAEW and ultrasound combined with slightly acidic electrolyzed water (US + SAEW) for 10 min, respectively. The results suggested that US + SAEW treatment could retard the increase of total viable counts (TVC), Pseudomonas bacteria counts and H2S-producing bacteria counts, which also inhibit the rise of total volatile basis nitrogen (TVB-N), thiobarbituric acid (TBA), pH and K value. In addition, compared with SAEW or US treatment alone, US + SAEW treatment had distinctly effects on inhibiting protein degradation and maintaining better sensory scores. Compared with DW group, the shelf life of sea bass treated with US + SAEW was increased for another 4 days. It indicated that the combined treatment of US and SAEW could be used to the preservation of sea bass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...